Chapter 9 Cluster Analysis
Answer the following questions in a point by point fashion. NOT an essay. Please ensure to use the Author, YYYY APA citations with any content brought into the assignment.
- For sparse data, discuss why considering only the presence of non-zero values might give a more accurate view of the objects than considering the actual magnitudes of values. When would such an approach not be desirable?
- Describe the change in the time complexity of K-means as the number of clusters to be found increases.
- Discuss the advantages and disadvantages of treating clustering as an optimization problem. Among other factors, consider efficiency, non-determinism, and whether an optimization-based approach captures all types of clusterings that are of interest.
- What is the time and space complexity of fuzzy c-means? Of SOM? How do these complexities compare to those of K-means?
- Explain the difference between likelihood and probability.
- Give an example of a set of clusters in which merging based on the closeness of clusters leads to a more natural set of clusters than merging based on the strength of connection (interconnectedness) of clusters.
Requirement: Provide a questions and Answer Paper with six (6) Questions specifically answered one after the other You must use properly formatted APA in-text citations and scholarly reference . NO Copying and Pasting from the Internet or other past student paper. There is no redo for plagarism.