Hello all,
I need help with this sample assignment which involves building a decision tree and providing some sensitivity and analytics exposition with it. See the prompt below:
Prompt: Problem A 9.31: Chelsea Bush is an emerging candidate for her partys nomination for president of the United States. She now is considering whether to run in the high-stakes Super Tuesday primaries. If she enters the Super Tuesday (ST) primaries, she and her advisers believe that she will either do well (finish first or second) or do poorly (finish third or worse) with probabilities 0.4 and 0.6, respectively. Doing well on Super Tuesday will net the candidates campaign approximately $16 million in new contributions, whereas a poor showing will mean a loss of $10 million after numerous TV ads are paid for. Alternatively, she may choose not to run at all on Super Tuesday and incur no costs. Chelseas advisors realize that her chances of success on Super Tuesday may be affected by the outcome of the smaller New Hampshire (NH) primary occurring three weeks before Super Tuesday. Political analysts feel that the results of New Hampshires primary are correct two-thirds of the time in predicting the results of the Super Tuesday primaries. Among Chelseas advisers is a decision analysis expert who uses this information to calculate the following probabilities: P(Chelsea does well in ST primaries, given she does well in NH) = 4 /7 P(Chelsea does well in ST primaries, given she does poorly in NH) = 1/4 P(Chelsea does well in NH primary) = 7 /15 The cost of entering and campaigning in the New Hampshire primary is estimated to be $1.6 million. Chelsea feels that her chance of winning the nomination depends largely on having substantial funds available after the Super Tuesday primaries to carry on a vigorous campaign the rest of the way. Therefore, she wants to choose the strategy (whether to run in the New Hampshire primary and then whether to run in the Super Tuesday primaries) that will maximize her expected funds after these primaries. I. Solve the decision tree for this problem. II. There is some uncertainty in the estimates of a gain of $16 million or a loss of $10 million depending on the showing on Super Tuesday. Either amount could differ from this estimate by as much as 25 percent in either direction. For each of these two financial figures, perform sensitivity analysis to check how the results in part a would change if the value of the financial figure were at either end of this range of variability (without any change in the value of the other financial figure). Then do the same for the four cases where both financial figures are at one end or the other of their ranges of variability.
There is a template we’re supposed to fill out (see attachment for template with guidance).
Thanks so much! Please reach out if you have questions or need anything else.