.0/msohtmlclip1/01/clip_image002.gif”>WebAssign Assignment 3 (TAM6) (Test) Current Score :– / 72 Due :Wednesday February 19 2014 11:59 PM EST .0/msohtmlclip1/01/clip_image004.jpg”> 1.–/2 points TanApMath6 2.1.002. Refer to the following figure. .0/msohtmlclip1/01/clip_image006.jpg”> Determine the coordinates of point B. (x y) =.0/msohtmlclip1/01/clip_image008.jpg”>.0/msohtmlclip1/01/clip_image010.jpg”>.0/msohtmlclip1/01/clip_image012.jpg”> In which quadrant is it located? .0/msohtmlclip1/01/clip_image014.jpg”> I .0/msohtmlclip1/01/clip_image014.jpg”> II .0/msohtmlclip1/01/clip_image014.jpg”> III .0/msohtmlclip1/01/clip_image014.jpg”> IV .0/msohtmlclip1/01/clip_image016.jpg”> http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 1 of 19 .0/msohtmlclip1/01/clip_image018.gif”>2.–/1 points TanApMath6 2.1.010. Refer to the following figure. .0/msohtmlclip1/01/clip_image020.jpg”> Which point has a negative x-coordinate and a negative y-coordinate? .0/msohtmlclip1/01/clip_image014.jpg”> A .0/msohtmlclip1/01/clip_image014.jpg”> B .0/msohtmlclip1/01/clip_image014.jpg”> C .0/msohtmlclip1/01/clip_image014.jpg”> D .0/msohtmlclip1/01/clip_image014.jpg”> E .0/msohtmlclip1/01/clip_image014.jpg”> F.0/msohtmlclip1/01/clip_image014.jpg”> G .0/msohtmlclip1/01/clip_image022.jpg”> http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 2 of 19 .0/msohtmlclip1/01/clip_image018.gif”>3.–/1 points TanApMath6 2.1.022. Find the slope of the line shown in the figure. (If an answer is undefined enter UNDEFINED.) .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image026.jpg”>.0/msohtmlclip1/01/clip_image016.jpg”> 4.–/1 points TanApMath6 2.1.026. Find the slope of the line that passes through the given pair of points. (If an answer is undefined enter UNDEFINED.) (4 5) and (3 12) .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image016.jpg”>.0/msohtmlclip1/01/clip_image010.jpg”> 5.–/1 points TanApMath6 2.1.036. If the line passing through the points (a 1) and (?10 9) is parallel to the line passing through the points (0 7) and (a 2 1) what is the value of a? a= .0/msohtmlclip1/01/clip_image028.jpg”>.0/msohtmlclip1/01/clip_image029.jpg”> http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 3 of 19 .0/msohtmlclip1/01/clip_image018.gif”>6.–/1 points TanApMath6 2.2.002. Match the statement with one of the graphs. The slope of the line is undefined. .0/msohtmlclip1/01/clip_image031.jpg”> http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 4 of 19 .0/msohtmlclip1/01/clip_image018.gif”>7.–/3 points TanApMath6 2.2.026. Write the equation in the slope-intercept form. y?8= 0 .0/msohtmlclip1/01/clip_image010.jpg”> Find the slope of the corresponding line. .0/msohtmlclip1/01/clip_image028.jpg”> Find the y-intercept of the corresponding line. (x y) =.0/msohtmlclip1/01/clip_image008.jpg”>.0/msohtmlclip1/01/clip_image010.jpg”>.0/msohtmlclip1/01/clip_image032.jpg”> .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image033.jpg”> 8.–/1 points TanApMath6 2.2.036. Find an equation of the line that satisfies the given condition. (Let x be the independent variable and y be the dependent variable.) The line passing through (?7 6) and parallel to the x-axis .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image033.jpg”>.0/msohtmlclip1/01/clip_image010.jpg”> 9.–/2 points TanApMath6 2.2.057. Using data compiled by the Admissions Office at an imaginary university college admissions officers estimate that 65% of the students who are offered admissions to the freshman class at the university will actually enroll. (a)Find an equation that expresses the relationship between the number of students who actually enroll (y) and the number of students who are offered admission to the university (x). (b)If the desired freshman class size for the upcoming academic year is 1300 students how many students should be admitted? .0/msohtmlclip1/01/clip_image010.jpg”> students .0/msohtmlclip1/01/clip_image028.jpg”>.0/msohtmlclip1/01/clip_image016.jpg”> http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 5 of 19 .0/msohtmlclip1/01/clip_image018.gif”>10.–/1 points TanApMath6 2.2.070. Determine whether the statement is true or false. If it is true explain why it is true. If it is false give an example to show why it is false. If the slope of the line L1 is positive then the slope of a line L2 perpendicular to L1 may be positive or negative. .0/msohtmlclip1/01/clip_image014.jpg”> True. The slopes of L1 and L2 are negative reciprocals of each other so they both can be negative or positive. .0/msohtmlclip1/01/clip_image014.jpg”> True. The slopes of L1 and L2 are reciprocals of each other so they both can be negative or positive. False. Let the slope of L1 be m1 > 0. Then the slope of L2 is m2 = ?1 < 0. m1 .0/msohtmlclip1/01/clip_image014.jpg">.0/msohtmlclip1/01/clip_image035.jpg”> .0/msohtmlclip1/01/clip_image014.jpg”> False. Let the slope of L1 be m1 > 0. Then the slope of L2 is m2 = m1 > 0. 1 False. Let the slope of L1 be m1 > 0. Then the slope of L2 is m2 =m1 > 0. .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image016.jpg”>.0/msohtmlclip1/01/clip_image014.jpg”>.0/msohtmlclip1/01/clip_image035.jpg”> 11.–/5 points TanApMath6 2.3.002. Let f be the function defined by the equation below. f(x) =9x -7Find the following. f(7) = f(1.25) = f(0) = .0/msohtmlclip1/01/clip_image028.jpg”>.0/msohtmlclip1/01/clip_image028.jpg”>.0/msohtmlclip1/01/clip_image028.jpg”>.0/msohtmlclip1/01/clip_image010.jpg”> f(a) = .0/msohtmlclip1/01/clip_image010.jpg”> f(a 1) = .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image029.jpg”> 12.–/1 points TanApMath6 2.3.034. Find the domain of the function. .0/msohtmlclip1/01/clip_image014.jpg”> (?? 8] .0/msohtmlclip1/01/clip_image037.jpg”> .0/msohtmlclip1/01/clip_image014.jpg”> (8 ?) .0/msohtmlclip1/01/clip_image014.jpg”> (?? ?) .0/msohtmlclip1/01/clip_image014.jpg”> (?? 8).0/msohtmlclip1/01/clip_image014.jpg”> [8 ?) .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image022.jpg”> 13.–/3 points TanApMath6 2.3.048. http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 6 of 19 Sketch the graph of the function with the given rule. .0/msohtmlclip1/01/clip_image039.jpg”> Find the domain and range of the function. Domain: .0/msohtmlclip1/01/clip_image014.jpg”> (?? ?) .0/msohtmlclip1/01/clip_image014.jpg”> [4 ?) .0/msohtmlclip1/01/clip_image014.jpg”> (?? ?4] .0/msohtmlclip1/01/clip_image014.jpg”> (?? ?4).0/msohtmlclip1/01/clip_image014.jpg”> (4 ?) Range: .0/msohtmlclip1/01/clip_image014.jpg”> [4 ?) .0/msohtmlclip1/01/clip_image014.jpg”> (4 ?) .0/msohtmlclip1/01/clip_image014.jpg”> (?? ?4) .0/msohtmlclip1/01/clip_image014.jpg”> (?? ?).0/msohtmlclip1/01/clip_image014.jpg”> (?? ?4] http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 7 of 19 .0/msohtmlclip1/01/clip_image040.gif”>.0/msohtmlclip1/01/clip_image041.gif”> 14.–/2 points TanApMath6 2.3.065. An efficiency study conducted for Elektra Electronics showed that the number of “Space Commander” walkie-talkies assembled by the average worker t hr after starting work at 8:00 a.m. is given by .0/msohtmlclip1/01/clip_image043.jpg”> N(t) = -t^3 6t^2 15t text( for ) (0<=t<=4) How many walkie-talkies can an average worker be expected to assemble between 8:00 and 9:00 a.m.? Between 9:00 and 10:00 a.m.? 8:00 - 9:00am.0/msohtmlclip1/01/clip_image045.jpg">.0/msohtmlclip1/01/clip_image047.jpg”> walkie-talkies .0/msohtmlclip1/01/clip_image049.jpg”> 9:00 – 10:00am .0/msohtmlclip1/01/clip_image051.jpg”> walkie-talkies .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image049.jpg”>.0/msohtmlclip1/01/clip_image029.jpg”> 15.–/1 points TanApMath6 2.3.075. Determine whether the statement is true or false. Explain why. A vertical line must intersect the graph of y = f(x) at exactly one point. .0/msohtmlclip1/01/clip_image014.jpg”> True. This is called the vertical-line test for determining whether a curve is the graph of a function. .0/msohtmlclip1/01/clip_image014.jpg”> False. A horizontal line must intersect the graph of y = f(x) at exactly one point. .0/msohtmlclip1/01/clip_image014.jpg”> False. It intersects the graph of a function in at most one point. .0/msohtmlclip1/01/clip_image014.jpg”> False. It intersects the graph of a function in at least one point. .0/msohtmlclip1/01/clip_image014.jpg”> False. A horizontal line must intersect the graph of y = f(x) at at least one point. .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image033.jpg”> 16.–/1 points TanApMath6 2.4.002. Let f(x) = x3 5 g(x) = x2 – 10 and h(x) = 6x 7. Find the rule for the function. f- g .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image016.jpg”>.0/msohtmlclip1/01/clip_image010.jpg”> 17.–/1 points TanApMath6 2.4.014. Let f(x) = x – 4 g(x) = ?x 4 and h(x) = 9×3 – 4. Find the rule for the function. h / g .0/msohtmlclip1/01/clip_image053.jpg”>.0/msohtmlclip1/01/clip_image055.jpg”> http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 8 of 19 .0/msohtmlclip1/01/clip_image018.gif”>18.–/2 points TanApMath6 2.4.030. Find the rules for the composite functions f.0/msohtmlclip1/01/clip_image057.jpg”> gand g.0/msohtmlclip1/01/clip_image057.jpg”> f.f(x) = sqrt(x 4) text( ; ) g(x) = 1/(x – 4) .0/msohtmlclip1/01/clip_image059.jpg”>f.0/msohtmlclip1/01/clip_image057.jpg”> g=.0/msohtmlclip1/01/clip_image010.jpg”> g.0/msohtmlclip1/01/clip_image057.jpg”> f=.0/msohtmlclip1/01/clip_image010.jpg”> .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image016.jpg”> 19.–/6 points TanApMath6 2.4.060. The total number of email messages per day (in billions) between 2003 and 2007 is approximated by f(t) = 1.54t2 7.1t 31.4 (0? t?4) where t is measured in years with t= 0 corresponding to 2003. Over the same period the total number of spam messages per day (in billions) is approximated by g(t) = 1.21t2 6t 14.5 (0 ? t ? 4).† (a) Find the rule for the function D= f? g. D(t) =.0/msohtmlclip1/01/clip_image010.jpg”> Compute D(4) and explain what it measures. D(4) = .0/msohtmlclip1/01/clip_image028.jpg”> .0/msohtmlclip1/01/clip_image014.jpg”> It measures the ratio of spam messages to all email messages. .0/msohtmlclip1/01/clip_image014.jpg”> It measures the total number of spam email messages per day. .0/msohtmlclip1/01/clip_image014.jpg”> It measures the total number of email messages per day. .0/msohtmlclip1/01/clip_image014.jpg”> It measures the total number of non-spam email messages per day. .0/msohtmlclip1/01/clip_image014.jpg”> It measures the ratio of all email messages to spam messages. (b) Find the rule for the function P = f/g. P(t) =.0/msohtmlclip1/01/clip_image010.jpg”> Compute P(4) and explain what it means. (Round your answer to two decimal places.) P(4) = .0/msohtmlclip1/01/clip_image028.jpg”> .0/msohtmlclip1/01/clip_image014.jpg”> It is the total number of spam email messages per day. .0/msohtmlclip1/01/clip_image014.jpg”> It is the ratio of all email messages to spam messages. .0/msohtmlclip1/01/clip_image014.jpg”> It is the ratio of spam messages to all email messages. .0/msohtmlclip1/01/clip_image014.jpg”> It is the total number of email messages per day. .0/msohtmlclip1/01/clip_image014.jpg”> It is the total number of non-spam email messages per day. .0/msohtmlclip1/01/clip_image033.jpg”> http://www.webassign.net/web/Student/Assignment-Responses/last?dep=8211621 Page 9 of 19 .0/msohtmlclip1/01/clip_image018.gif”>20.–/1 points TanApMath6 2.4.074. Determine whether the statement is true or false. If it is true explain why it is true. If it is false give an example to show why it is false. If g f is defined at x = a then f gmust also be defined at x= a. True. The domain of g f is the set of all x in the domain of f such that f(x) lies in the domain of g. True. The domain of g f is the set of all x in the domain of f such that f(x) lies in the domain of f g. True. The domain of g f is the set of all x in the domain of f g. False. Let f(x) = and g(x) = x 2. Then (g f)(x) = is defined at x = ?1. x x 2 But (f g)(x) = 2 is not defined at x = ?1. x False. Let f(x) = x 2 and g(x) = . Then (g f)(x) = is defined at x = ?1. x x 2 But (f g)(x) = 2 is not defined at x = ?1. x .0/msohtmlclip1/01/clip_image024.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image016.jpg”>.0/msohtmlclip1/01/clip_image014.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image014.jpg”>.0/msohtmlclip1/01/clip_image014.jpg”>.0/msohtmlclip1/01/clip_image014.jpg”>.0/msohtmlclip1/01/clip_image061.jpg”>.0/msohtmlclip1/01/clip_image063.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image063.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image061.jpg”>.0/msohtmlclip1/01/clip_image063.jpg”>.0/msohtmlclip1/01/clip_image014.jpg”>.0/msohtmlclip1/01/clip_image061.jpg”>.0/msohtmlclip1/01/clip_image063.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image063.jpg”>.0/msohtmlclip1/01/clip_image057.jpg”>.0/msohtmlclip1/01/clip_image061.jpg”>.0/msohtmlclip1/01/clip_image063.jpg”>